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Integration of Technology, Curriculum, and Professional Development 

for Advancing Middle School Mathematics: 

Three Large-Scale Studies 

 

Abstract 

We present three studies (two randomized controlled experiments and one embedded 

quasi-experiment) designed to evaluate the impact of replacement units targeting student 

learning of advanced middle school mathematics. The studies evaluated the SimCalc approach, 

which integrates an interactive representational technology, paper curriculum, and teacher 

professional development. Each study addressed both replicability of findings and robustness 

across Texas settings with varied teacher characteristics (backgrounds, knowledge, attitudes) and 

student characteristics (demographics, levels of prior mathematics knowledge). Analyses 

revealed statistically significant main effects, with student-level effect sizes of .63, .50, and .56. 

These consistent gains support the conclusion that SimCalc is effective in enabling a wide 

variety of teachers in a diversity of settings to extend student learning to more advanced 

mathematics. 
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Integration of Technology, Curriculum, and Professional Development 

for Advancing Middle School Mathematics: 

Three Large-Scale Studies 

Introduction 

Middle school is an important transition point in students’ school trajectories, especially 

with regard to mathematics (Nathan & Koellner, 2007). Starting in middle school, mathematical 

concepts become increasingly difficult; they are more abstract, and understanding requires 

making connections across algebraic and graphical representations (Leinhardt, Zaslavsky, & 

Stein, 1990). International comparison research shows that although U.S. fourth-grade students 

compare favorably, eighth-grade students fall behind their foreign peers, particularly in their 

mastery of more advanced mathematics (Schmidt et al., 2001). This is a cause for concern not 

only for students’ future development in mathematics, but also for students’ preparation for 

careers in science, engineering, and technology (Tai, Qi Liu, Maltese, & Fan, 2006). 

Further evidence of the need to improve American students’ mathematics achievement 

comes from the National Assessment of Educational Progress (NAEP) (National Center for 

Education Statistics, 2006). Although NAEP results reveal improvement in middle school 

mathematics learning over time, the trend falls far below the No Child Left Behind goal of 

enabling all students to achieve proficiency by 2014. NAEP results show that in eighth grade, 

only 47% of White students and 54% of Asian students rise above the basic level to proficient or 

advanced use of mathematical concepts and skills. The often cited evidence of an achievement 

gap is that only 13% of Black students, 19% of Hispanic students, and 13% of students eligible 

for free or reduced-price lunch demonstrate proficiency in eighth grade (National Center for 

Education Statistics, 2006, p. 37). Evaluating research-based curricular programs that aim to 
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enable all students to learn more advanced mathematics is an important goal. 

This article reports results from a series of studies within a research program on scaling 

up and evaluating a technology-based approach to advanced mathematics called SimCalc. The 

SimCalc approach is intended by its developers to “democratize access to the mathematics of 

change and variation” by enabling a broader range of students to learn more advanced 

mathematical concepts and skills. Further, developers intend for SimCalc students to learn more 

advanced mathematics without jeopardizing progress on basic mathematics skills.  

The approach was originally developed in design research conducted in just a few 

classrooms at a time with frequent researcher participation in daily teaching and learning 

activities. This method allows rapid iterative improvement of a design, but does not yield strong 

evaluative results. Like most design research (Design Based Research Collaborative, 2002), early 

SimCalc research had small convenience samples of teachers whom the research team provided 

with unmeasured amounts of support. With a convenience sample, research findings are subject 

to the “boutique critique”—that the schools, teachers, and students are special in some important 

way and that the results will not be generalizable (Roschelle, Tatar, & Kaput, 2008). In order to 

better evaluate the promise of the design, the research and developed team initiated a program of 

scaling up so that the design could be evaluated in experimental field trials with more careful 

attention to sampling populations.  

 Important scaling goals of the research reported in this paper were to extend the 

approach to over one hundred schools and teachers and thousands of students while removing the 

participation of researchers in the classrooms. Scaling up, however, is not merely about 

achieving a larger N (Cobern, 2002). A key element of the program was also to more tightly 

integrate software, curriculum and professional development so that teachers and students would 
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experience an aligned intervention. We have written extensively about the process of scaling up 

elsewhere (Roschelle, Tatar, & Kaput, 2008; Roschelle, Tatar, Shechtman, & Knudsen, 2008) 

with regard to process of going from design research to a well-specified intervention; this paper 

focuses on evaluation of SimCalc as packaged in intervention form and delivered at a reasonable 

scale. 

We report results from two experimental comparisons and one quasi-experimental 

comparison within two different grade levels. By presenting all three comparisons here, we allow 

the examination of replicability of results. In addition to replicability, a goal of this research 

program was to evaluate the SimCalc approach with a wide variety of teachers in diverse 

demographic settings.  

After providing background on research on technology in mathematics education, we 

give an overview of the SimCalc approach to integrating professional development, curriculum, 

and technology. We then describe three studies. The first study, in the seventh grade, had the 

largest sample. In addition to evaluation of main effects, this experiment allowed comparisons 

among geographical areas with strikingly different demographics. In the second study, we 

followed teachers from the control group in the first experiment as they implemented the 

SimCalc approach in the next school year. This quasi-experiment allowed us to contrast 

treatment and control conditions within a teacher and across student cohorts. In the third study, 

we examined an extension to eighth grade of the same overall SimCalc approach but with a more 

advanced mathematical topic. In addition, the eighth-grade experiment provided professional 

development via a train-the-trainers paradigm, an additional realistic element of scaling up and 

an additional means to minimize the potential that the program developers were directly involved 

in producing observed outcomes. The train-the-trainers paradigm has been used in two 
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reportedly successful programs for reading, Reading Recovery and Success for All (Denton, 

Vaughn, & Fletcher, 2003; Fletcher, Foorman, Dento, & Vaughn, 2006). By examining three 

sufficiently powered comparative studies, we are able to bring considerable scientific evidence to 

bear on the replicability and robustness of the SimCalc approach as well as the potential to 

deploy it via a train-the-trainers model. In our discussion, we draw conclusions based on the 

similar pattern of results across experiments and discuss limits to generalizability.  

Technology in Mathematics Education 

Technology has been used throughout the history of mathematics education. Socrates 

drew figures in the sand to illustrate his points (Jowett, 1875). Many ancient and modern 

societies used an abacus both as a procedural tool and conceptual model of arithmetic (Fauvel & 

Maanen, 2000). More recently, most elementary schools introduced use of physical 

manipulatives, such as Dienes’ Blocks, for introducing place value and other arithmetic concepts 

(Varelas & Becker, 1997). Calculators and graphing calculators are common in secondary 

schools (and controversial in lower grades). Four-function and scientific calculators are typically 

used to simplify tedious computations, leading to greater focus on the pedagogical point, and 

graphing calculators can be important in students’ development of their conceptual 

understanding of mathematical functions (Doerr & Zangor, 2000; Ellington, 2003). Thus, 

technology supports both computation and representation. In particular, technology can support 

mathematical ideas in ways that are important for conceptual understanding (Kaput, Hegedus, & 

Lesh, 2007).  

Computer software for mathematics learning can take many forms and operate through 

different cognitive mechanisms. Software can provide students with opportunities for practice 
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and rapid feedback in a motivating environment or have higher order cognitive goals 

(Wenglinksy, 1998). Programming tools can provide opportunities for students to write 

mathematical programs, and developmental principles suggest that constructing programs can 

lead to constructing knowledge (Papert, 1980). Experimental research has documented positive 

effects from the use of the programming language Logo (National Mathematics Advisory Panel, 

2008). Educational applications can build on cognitive theory (Anderson, Corbett, Koedinger, & 

Pelletier, 1995; Corbett, Koedinger, & Hadley, 2001) by tracing students’ step-by-step progress 

on a problem and intervening when their performance differs from expert behavior. Wireless 

networks may support learning via formative assessment and/or social mechanisms that operate 

at classroom level (Roschelle, 2003). Given the long history of technology in mathematics 

education and the many differences in approach and application, useful research must now go 

beyond making claims about technology in general or in isolation from its use; specific 

approaches must be described—with their entailments, assumptions, and goals—and evaluated 

on their merits (National Mathematics Advisory Panel, 2008). 

The intervention discussed in this paper takes a representational approach (Kaput, 1992) 

in which computers are seen as supporting new visualizations of and interactions with 

mathematical objects. Graphical representations (e.g., graphs, geometric figures, animations) are 

often juxtaposed with linguistic representations (e.g., text, verbal narratives, algebraic symbols). 

Dienes (the designer of Dienes’ Blocks) provided the rationale for this juxtaposition; he argued 

that because mathematical concepts are abstract but human minds develop concepts from 

concrete experiences, we can often best come to understand an abstraction by interacting with 

multiple concrete embodiments (Dienes, as cited in Lesh, Cramer, Doerr, Post, & Zawojewski, 

2003). Each of these concrete embodiments will be impure in some ways, but by striving to 
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make connections between embodiments at a conceptual level we can grasp the intended 

mathematical abstraction.  

Research on the Representational Approach to Technology 

The research base supporting a representational approach is broad but fragmented. 

Cognitive theory supports the approach via the multimedia principle, which has firmly 

established the benefits of carefully integrated presentations of the same concept in linguistic and 

graphical forms (Mayer, 2005). In related research, a meta-analysis that summarized findings 

from more than 100 research studies involving 4,000+ experimental/control group comparisons 

revealed that both representing knowledge graphically and using manipulatives to explore new 

knowledge and practice applying it had a large effect size. “The overall effect size for these 

techniques was .89, indicating a percentile gain of 31 points. The use of computer simulation as 

the vehicle with which students manipulate artifacts produced the highest effect size” (Marzano, 

1998, p. 91). Despite the positive findings of this meta-analysis, one limitation is that in none of 

the experiments was multilevel linear modelling used to account for the nesting of students 

within teachers, and few carefully described the role of technology in the overall intervention. 

This is a serious limitation because it fails to rule out clustering effects.  

As yet, randomized experiments using multilevel linear modelling to explore the use of 

technology and its mediators and moderators in mathematics education are rare, and no such 

experiments have been conducted on the representational approach. The most prominent 

random-assignment experiment is the National Study of the Effectiveness of Educational 

Technology Interventions (EETI), which found “test scores were not significantly higher in 

classrooms using selected reading and mathematics software products” (Dynarski et al., 2007, p. 
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xiii). For the EETI study, 16 mathematics and reading products were chosen on the strength of 

prior research and their readiness for large-scale deployment. The products were evaluated in a 

random-assignment experiment in hundreds of schools, with vendors providing as much support 

as they determined to be necessary. Nearly all the products were well used and well liked by the 

participating teachers. Yet the results were not different from business as usual. The EETI did 

not, however, included products that take a representational approach. 

To our knowledge, the research reported in this paper is the first to examine a 

representational approach within a program of randomized controlled experimentation with a 

sufficiently large scope to use multilevel modelling. The advantages of multilevel modelling are 

that we can both correct for analytic errors in single level analyses and examine both the main 

effects and the moderating effects of teacher-, classroom-, or school-level variables on student-

level outcomes.  

Overview of the SimCalc Approach to Mathematics Learning 

The SimCalc Project, based at the James J. Kaput Center at the University of 

Massachusetts, Dartmouth, has a research program with a broader scope than this series of 

studies, extending to more grades, more technologies, and more mathematics. In the overall 

project mission of “democratizing access to the mathematics of change and variation” (Kaput, 

1994; Kaput, 1997), the phrase “the mathematics of change and variation” is meant to highlight 

the strand of mathematics relating to much of algebra and leading to calculus. Kaput used this 

phrase in contrast to the mathematics of uncertainty (probability and statistics) and the 

mathematics of space (geometry). The mathematics of change and variation emphasizes the 

concepts of rate and accumulation as thematic content that can be developed across many grade 
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levels. A foundational belief of the SimCalc project team is that reconceptualizing some of the 

mathematics in middle school and high school in light of the broader mathematics of change and 

variation can yield a more coherent and fruitful mathematical experience for both disadvantaged 

and advantaged learners (Kaput, 1997). The phrase “democratizing access” refers to desire to 

enable students in disadvantaged settings to have a better opportunity to learn advanced and 

important mathematics. Scaling up has been a theme throughout the SimCalc program 

(Roschelle, Tatar, & Kaput, 2008; Roschelle, Tatar, Shechtman, & Knudsen, 2008). Early 

cognitive and developmental research in the program involved small numbers of students. As the 

program evolved over a decade, the research shifted to tens of teachers, then tens of schools, and 

in these experiments a handful of geographic areas. 

The hallmarks of the SimCalc approach to the mathematics of change and variation are 

the following: 

1. Anchoring students’ efforts to make sense of conceptually rich mathematics in their 

experience of familiar motions, which are portrayed as computer animations; 

2. Engaging students in activities to make and analyze graphs that control animations; 

3. Introducing piecewise linear functions as models of everyday situations with changing 

rates; 

4. Connecting students' mathematical understanding of rate and proportionality across key 

mathematical representations (algebraic expressions, tables, graphs) and familiar 

representations (narrative stories and animations of motion); 

5. Structuring pedagogy around a cycle that asks students to make predictions, compare 

their predictions with mathematical reality, and explain any differences.  
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The SimCalc MathWorlds software provides a “representational infrastructure” (Kaput et 

al. 2007; Kaput & Roschelle, 1998) that is central to enabling this approach. Most distinctively, 

the software presents animations of motion (Figure 1). Students can control the motions of 

animated characters by building and editing mathematical functions in either graphical or 

algebraic forms. After editing the functions, students can press a play button to see the 

corresponding animation. Functions can be displayed in algebraic, graphical, and tabular form, 

and students are often asked to tell stories that correspond to the functions (and animations). The 

software is meant to be used in what Dewey described as a cycle of “doing and undergoing” 

(Dewey, 1938). The program developers view student use of the software and teacher 

explanations and teacher-led discussions as complementary activities (Lobato, Clarke, & Ellis, 

2005). They expect that students can learn more from teacher-led presentations and discussions 

when they have had direct experience with the software, as in a preparation for future learning 

paradigm (Bransford & Schwartz, 1999).  

[----------INSERT FIGURE 1 ABOUT HERE----------] 

In addition to proportional and linear functions, students and teachers can make 

piecewise linear functions, which can be used to model familiar situations. In the screen in the 

software shown in Figure 1, the graph plots position vs. time and the animation above displays 

the corresponding motion. Thus the multisegment line in the graph can represent the following 

story:  

Two girls were having a race. One girl ran at a constant speed to the finish line. The other 

girl started to run across the field but then realized she dropped her baton and stopped. 

She walked back to get the baton and then started in the right direction again and finally 

ran quickly to end the race in a tie.  
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In the studies reported here, we used many but not all of the core features of the 

MathWorlds software. Features not used included devices that can collect data from real physical 

motions and a classroom wireless network to organize social mathematical activities (Kaput & 

Hegedus, 2002). Although the software runs on computers or graphing calculators, we used 

computers because they are more available in middle schools. 

A favorite slogan of the program founder, James J. Kaput, was that “new technology 

without new curriculum is not worth the silicon it’s written in.” This representational 

infrastructure is made usable in classrooms by specifying particular software documents (setups), 

paper curricular materials, and teacher professional development. Consequently, the 

interventions we tested consisted of an integration of technology and curriculum with supporting 

teacher training. The specific curricula used were based on lesson documents and packages 

previously tested in design research at the University of Massachusetts but reformulated to fit the 

specific needs of our target state, Texas. Although the program developers believe that strong 

classroom practices around mathematical argumentation would result in superior 

implementations, the research team did not expect to be able to change teachers’ existing 

pedagogy in the short time available for summer workshops. Therefore, first year training 

workshops modelled appropriate pedagogy but did not seek to change classroom discourse 

practices. Second year training workshops included a limited focus on appropriate teaching 

moves.  

Several studies conducted with subsets of the data considered here reached publication 

earlier than this article and are used to inform the presentation here. Roschelle, Shechtman et al. 

(2008) examined correlations between data in teacher logs and student outcomes. In particular, 

they found that teachers who more frequently reported teaching goals that were cognitively 
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complex had students who learned more. Pierson (2008) investigated classroom discourse in a 

set of classrooms for which we had videotapes of the exact same lesson. She found that teachers 

who were more responsive to student ideas and who presented students with more challenging 

mathematical tasks had students who learned more. Dunn (2009) investigated the train-the-

trainer model in the Eighth-Grade Experiment. She found that the trainers were successful in 

accomplishing simple and limited goals such as introducing teachers to the software and 

curriculum workbooks and preparing them to teach using those materials. She found less 

influence from the training workshops on pedagogy, such as how much time teachers allowed 

students to use the software or how student work with the software was taken up in classroom 

discussion. Empson (2009) conducted in-depth case studies of three teachers and found that 

different teachers configured the available learning resources in quite different ways; there was 

not a single successful approach to enacting the SimCalc materials in a classroom. For example, 

in one classroom the software was a more prominent resource for students; in another, teacher-

led discussion was a more prominent resource. These different configurations drew on teachers’ 

strengths in different ways. 

Research Design and Methods 

The core research questions of the Scaling Up SimCalc Research Program were as 

follows:  

1. Can a wide variety of teachers use an integration of technology, curriculum, and 

professional development to create new opportunities for middle school students to 

learn complex and conceptually difficult mathematics? 

2. Can these findings be extended across grade levels? 
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3. Do student gains persist as we reduce the presence of the research and development 

team? 

This article primarily focuses on the first two questions. The third question is addressed in 

part in the experiment that tests a train-the-trainers model because the R&D team has little direct 

contact with teachers in this model. The third question also highlights sustainability, which will 

addressed in a forthcoming article that tracked teachers for an additional year. 

Experimental Design 

To investigate all three research questions, we implemented two randomized experiments 

(one of which contained an embedded quasi-experiment) with pre/post measurement. The first 

experiment, the Seventh-Grade Experiment Year 1, began in summer 2005 with seventh-grade 

content, students, and teachers. The second, the Eighth-Grade Experiment, began in summer 

2006 and was designed to extend the findings of the Seventh-Grade Experiment Year 1 to 

eighth-grade content, students, and teachers and investigate a train-the-trainers approach. 

Schools were randomly assigned to either a treatment or control group at the beginning of each 

study.  

Whereas the Eighth-Grade Experiment lasted 1 year only, the Seventh-Grade Experiment 

lasted 2 years and followed a delayed-treatment design. The second year of the study afforded an 

embedded Seventh-Grade Quasi-Experiment in which control teachers (also called the delayed-

treatment teachers) began to use the SimCalc replacement unit and treatment teachers (also 

called the immediate-treatment teachers) continued to use it. The staggered nature of this design 

enabled us first to compare between-teacher results obtained in Year 1 (i.e., immediate treatment 

versus delayed treatment). Then we could make a within-teacher quasi-experimental comparison 
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between classrooms of the delayed-treatment teachers in Year 1 with the classrooms of the same 

teachers in Year 2, when those teachers received the SimCalc replacement unit. The delayed-

treatment design has been used successfully in schools, both in our pilot and by other 

investigators (Campbell, Shadish, & Cook, 2001; Slavin, 2002). 

These studies were preceded by a pilot experiment that is reported in detail elsewhere (Tatar 

et al., 2008). We found an overall main effect in the pilot study such that students of treatment 

teachers had both higher posttest scores (z = 2.95, p < .01) and greater learning gains (z = 3.49, p 

< .0001) than students of control teachers. 

Site Selection: Texas 

This research took place in the state of Texas, which provided a good setting for a 

number of reasons. First, Texas is a large state with wide regional variations in the diversity of 

subpopulations of teachers and students. Given that a key goal of both studies was to evaluate the 

SimCalc approach with a wide variety of teachers in assorted demographic settings, this diversity 

was important. Second, we were able to partner with the Charles A. Dana Center at the 

University of Texas, which has both a strong interest in increasing the number of students who 

progress in mathematics to advanced placement (AP) calculus and a history of providing teacher 

professional development at large scale throughout the state. Through its highly regarded and 

extensive professional development programs for mathematics teachers in Texas, the Dana 

Center had the ability and credibility to recruit teachers throughout the state, to help the project 

address concerns that potential teachers and administrators might have about participation in the 

project, and to facilitate workshops and provide workshop components, including a train-the-

trainer model. In addition, the Dana Center had already been promoting an aligned sequence of 
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instruction leading from middle school through AP calculus, and SimCalc naturally fit into this 

sequence. Third, Texas has an established, stable, and well-aligned system of standards and 

accountability. This enabled us to align the SimCalc curriculum with existing Texas curricula 

and standards and have confidence that the standards would not change midstream in our 

research and that conversations with teachers about curriculum would be consistent throughout 

the state. Fourth, Texas conducts a yearly census of teachers, schools, and districts. This allowed 

us to evaluate the properties of our sample relative to more general demographic information. 

Components of the Treatment Interventions 

In this description of the major components of the treatment, we begin with a discussion 

of the intervention logic and then describe the mathematical content, curricula, and teacher 

professional development. Note that in our experiments we did not evaluate the strength of the 

contribution from each of these components, but rather the impact of the intervention as a whole. 

Intervention Logic: Replacement Units That Integrate Technology, Curriculum, and Teacher 

Professional Development 

Cohen and colleagues (Cohen, Raudenbush, & Ball, 2003) have argued that the proper 

focus of research on scalable improvements to education is on instruction. Following their work, 

which also answers important historical critiques of attempts at educational improvement (e.g., 

Elmore, 1996), we viewed instruction as the interaction among teachers and students around 

content in environments. Our intervention logic was to seek improvement by providing as input 

to this system an integration of curriculum, software, and professional development.  

Design research provided evidence that influenced the way we conceptualized our 

experiments and implemented the representational approach in the classroom. Overall, design 
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research rejects the idea that technology alone can have a robust effect on student learning. 

Instead, researchers recommend examining interventions that integrate multiple factors including 

pedagogy, curriculum, professional development, assessment, and school leadership (Roschelle, 

Pea et al., 2000). Design research points out that these elements are not truly separable in 

practice and further suggests that it may not be a high priority to separate them.  

We conceptualized the SimCalc intervention as a replacement unit for several reasons. 

Prior large-scale research had recommended the replacement unit strategy (Cohen & Hill, 2001) 

because it balances the trade-offs between ambition and specificity. The goals of the research 

were inherently ambitious and so, too, was the use of the representational infrastructure. 

Replacement units were large enough and long enough to allow real change and meaningful 

learning consistent with these goals. At the same time, the short, contained nature of a 

replacement unit limited the perceived risks of the teachers and schools in participating, allowed 

us to provide explicit curricular content and pedagogical guidance and tight connections to 

existing standards, and enabled us to understand and manage the conditions of implementation. 

Focal Mathematical Content: Multiple Perspectives 

In preparing our experiments, we specified the mathematics that would be the focus of 

each intervention. Not only did we have to specify the focal content to be covered to both meet 

and exceed current mathematics instruction, but we also had to ensure that this was done in a 

way recognizable and consistent with state concerns, with research knowledge, and with best 

pedagogical practice. Coherence is increasingly seen as the most important quality of 

mathematical curricula (National Mathematics Advisory Panel, 2008). We started first by 

identifying the concepts at the intersection of the Texas seventh- and eighth-grade standards and 

 



  18 18

the capabilities of the SimCalc approach. This led to the identification of proportionality and 

linear function as our target mathematics.  

Among middle school mathematical concepts, proportionality ranks high in importance, 

centrality, and difficulty (Hiebert & Behr, 1988; National Council of Teachers of Mathematics, 

2000; Post, Cramer, Behr, Lesh, & Harel, 1993). For example, the National Council of Teachers 

of Mathematics (NCTM) describes proportionality and related concepts as “focal points” for 

learning in seventh and eighth grade (National Council of Teachers of Mathematics, 2007). From 

a mathematics perspective, proportionality is closely related to the important concepts of rate, 

linearity, slope, and covariation. In addition, proportionality offers an opportunity to introduce 

students to the concept of a function, through the constant of proportionality, k, that relates x and 

f(x) in the functional equations of the form f(x) = kx. A deep understanding of the concept of 

function as it relates to rate, linearity, slope, and covarariation is central to progress in algebra 

and calculus. These concepts are also central to students’ science learning. Without 

understanding rate and proportionality, students cannot master important topics and 

representations in high school science, such as laws (e.g., F = ma, F = –kx), graphs (e.g., of 

linear and piecewise linear functions), and tables (e.g., interpolating between explicit values 

relating the width and length of maple leaves). Mathematics education research has identified 

persistent difficulties in mastering these concepts and has theorized that proportionality is at the 

heart of the conceptually challenging shift from additive to multiplicative reasoning (Harel & 

Confrey, 1994; Leinhardt, Zaslavsky, & Stein, 1990; Vergnaud, 1988).  

To further specify the target mathematics, the team examined textbooks used in the Texas 

state curricular standards, preexisting SimCalc materials, and the research literature. In 

conjunction with a mathematics advisory board including three mathematicians and three 
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mathematics educators, we developed a mathematics framework for the seventh- and then for 

eighth-grade intervention that abstracted the mathematical concepts (Table 1) to be used in the 

curricula and assessments. The SimCalc team noted that proportionality can be taught both as a 

formula (
d

c

b

a
=  ) and a function f(x) = kx. The analysis of the latter function across algebraic, 

graphical, tabular, animated, and verbal forms can be the starting point for the learning 

progression that leads to calculus. In particular, emphasizing the conceptual links among 

different expressions of rate brings coherence to instruction that promotes an ever-deepening 

understanding of the mathematics of change and variation across many years of material. The 

particular opportunity in seventh-grade instruction is to connect the multiplicative constant k in 

the algebraic expression y = kx, the slope of a graphed line, the constant ratio of differences in a 

table comparing y and x values, and the experience of rate as speed in a motion. In eighth grade 

these connections expand to the more complex model implied by the linear function y = mx + b.  

[----------INSERT TABLE 1 ABOUT HERE----------] 

In this article, we use the symbol M1 to refer to the mathematics that is measured on the 

tests used for accountability in Texas. This mathematics embodies a formula approach to 

proportionality and linearity and tends to ask students to find a number given two or three other 

numbers. We use the symbol M2 to refer to mathematics that goes beyond what is tested in 

Texas. This mathematics embodies a function approach to proportionality and linear function and 

often asks students to consider the mapping between a domain and range and to connect such 

concepts as rate across multiple representations (e.g., k, in y = kx and the slope in a graph of y = 

kx). 

This discussion of overlapping but not entirely consistent mathematical perspectives is 
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important because our findings may appear different depending on which perspective a reader 

adopts. For example, a reader with a state standards/accountability perspective might come to a 

different view than a reader with a mathematics education research perspective. A teacher who 

wants to implement NCTM recommendations may come to a different conclusion than a teacher 

who wants her classroom’s scores to improve on the existing state test. 

Curricula 

We designed two replacement units, one for the seventh grade and one for the eighth 

grade. Each unit covered the relevant mathematical content as outlined in Table 1. The materials 

for both units were student workbooks, a teacher’s guide, and corresponding SimCalc 

MathWorlds files. The package was designed to be used daily over a 2- to 3-week period to meet 

all the requirements to cover an existing topic in the curriculum (i.e., rate and proportionality in 

seventh grade and linear function in eighth grade) while also introducing a more advanced 

perspective. The computer files configured the software to fit a particular lesson. Teachers were 

required to have access to computer laboratories or classroom computer sets, but students could 

share computers. Teachers could teach their unit by simply following the problems and questions 

posed in the workbook in the order given. These were not “scripted” curricula, but they did 

suggest movements between small group work, whole class discussion, and seat work. The 

teacher guides provided lesson plans that teachers could adapt and hints on possible student 

responses.  

The seventh-grade curriculum, Managing the Soccer Team, addresses central concepts of 

proportionality: linear function, in the form y = kx, and rate. Speed as rate is developed through a 

sequence of increasingly complicated simulations. Lessons progress through representations—
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from graphs, to tables, to equations—aiming to teach students to translate among all three and to 

connect each concept to verbal descriptions of motion or other real-world contexts. The unit’s 

contextual theme is that students must serve as a soccer team manager—training players, 

ordering uniforms, planning trips to games, and negotiating their own salary. 

The eighth-grade curriculum, Designing Cell Phone games, addresses linear function and 

average rate. Linear functions are developed as models of motion and accumulation. Students 

learn to use different representations of these functions for problem solving and to translate 

among the representations. Graphical representations are intended to enable students to 

efficiently solve traditionally difficult word problems about average rate. The unit’s contextual 

theme is that students are designers of electronic games who must use mathematics to make the 

games functional. 

Teacher Professional Development 

For each of the studies, teachers were provided with professional development 

opportunities to strengthen their mathematical content knowledge, learn to use the curriculum 

materials, and/or plan specifically how to use the materials.  

In all three studies, treatment teachers attended a 3-day summer workshop introducing 

the respective SimCalc replacement units. The teachers worked through the SimCalc materials as 

learners, experiencing a complete but compressed version of the entire unit. The workshop 

facilitators emphasized the mathematics in the replacement unit and the mathematics knowledge 

needed for teaching the unit. The facilitator also modelled best-practice pedagogical methods and 

drew attention to the techniques she used to prompt thorough exploration of mathematical ideas. 

Teachers had ample opportunity to practice using the software. Together, the facilitator and 
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participants also discussed potential classroom issues that might arise during the unit.  

Treatment teachers also attended a 1-day workshop in the early fall in which they made 

specific plans for how and when to use the SimCalc materials in their classroom. Working 

primarily in pairs, the teachers wrote lesson plans and thought through their own logic for the 

unit. 

In addition in the Seventh-Grade Experiment Year 1, before the 3-day SimCalc material 

workshop, treatment teachers attended a 2-day workshop called TEXTEAMS, which addressed 

the mathematical knowledge for teaching rate and proportionality. This workshop is described in 

more detail in the section below on the design of the counterfactuals. 

To investigate whether student gains would persist as we reduced the presence of the 

research and development team, we used two different teacher professional development 

delivery models. For the Seventh Grade studies, the training in implementing the SimCalc 

replacement unit remained relatively tightly controlled across the various Texas regions. Two 

members of the SimCalc team—both highly experienced mathematics teacher educators—led all 

the professional development workshops. This model was intended to ensure consistency and 

quality of delivery across all the workshops. In the Eighth-Grade Experiment, we used a train-

the-trainers model. The SimCalc team trained six teacher educators from five regions of Texas in 

a 2-day workshop. The workshop covered the learning goals, the MathWorlds software, and the 

curriculum workbooks. Each of these participants then returned to their home region and, at a 

later date, facilitated a 3-day summer workshop for teachers participating in this study. As a 

dissertation describes in detail (Dunn, 2009), all workshops introduced teachers to the SimCalc 

software and curriculum units but the pedagogical content of these workshops for teachers varied 

. In subsequent observational case studies of classroom implementation, Dunn found that while 
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the workshops were sufficient to enable teachers to teach with the SimCalc materials, the 

workshops did not exert much influence over teachers’ existing pedagogy.  

Design of the Counterfactuals 

In an experimental design, the counterfactual (control condition) must be designed to 

allow causal inferences to be made about the impact of the treatment intervention. In these 

experiments, a primary goal was to investigate whether the SimCalc intervention was the causal 

factor in enabling a wide variety of students to learn more advanced (M2) mathematics while 

maintaining gains on more basic (M1) mathematics. Thus, the design of the counterfactual 

conditions needed to reduce the plausibility of alternative explanations for the cause of any 

differential learning gains that we might observe across groups. The single most important threat 

to internal validity would be the presence of a confound—some other contemporaneous but 

unrelated circumstance that caused the measured growth in student learning. Because of the 

integrated nature of our intervention, we designed the counterfactuals to encompass both 

curriculum implementation and teacher professional development. 

For curriculum implementation, because our unit of instruction was a replacement unit 

(e.g., Cohen et al., 2003), the most natural counterfactual was the curriculum that was replaced—

the business as usual curriculum. In both the Seventh- and Eighth-Grade Experiments, the 

business as usual curriculum addressed, within the same time frame as the SimCalc unit, similar 

basic concepts (M1) but provided less coverage of more complex concepts (M2). Using this as a 

counterfactual enabled us to examine the learning that took place when the opportunity to learn 

M2 concepts was provided through an integration of technology, curriculum and professional 

development. Also, in the Seventh-Grade Studies, as described below, teachers in both the 
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treatment and control groups had equal access to TEXTEAMS materials that they could use to 

supplement their units to teach M2 concepts. Thus the contrast is between (a) an integrated 

SimCalc intervention and (b) business-as-usual curriculum with similar M1 coverage 

supplemented with teacher professional development and materials that provided M2 content.  

The teacher professional development components were designed to address possible 

confounds such as the degree to which teachers might differentially across groups feel part of a 

new and special project, believe in the usefulness of the intervention, find the amount of work 

required for participation and compensation for that work acceptable, have an opportunity to 

interact with colleagues, or feel supported by the research team. In line with these considerations, 

we designed the professional development in the control interventions to parallel that in the 

treatment interventions along these dimensions. In the Seventh Grade Experiment, we chose a 

workshop called TEXTEAMS, which was developed by our partners at the Dana Center and was 

highly regarded in Texas. The workshop introduced both M1 and M2 components of rate and 

proportionality, and provided activities that teachers could take back into the classroom and use 

with their students. Both immediate and delayed treatment teachers in Year 1 received the same 

2-day TEXTEAMS workshop as those in the treatment group but not the rest of the treatment 

professional development specific to SimCalc. In the Eighth-Grade Experiment, instead of the 

treatment professional development, control teachers received a 3-day summer workshop on 

teaching statistics called Teaching Mathematics TEKS (Texas Essential Knowledge and Skills) 

through Technology (TMT3). The workshop, also developed and delivered by the Dana Center, 

was recognized in Texas as a high-quality offering and allowed participants to learn to use 

technology to support student learning of statistics. 

Furthermore, in the Seventh-Grade Studies, the delayed-treatment design supported equal 
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treatment and equal engagement among all teachers because delayed-treatment teachers knew 

that eventually, in Year 2, they would receive the SimCalc intervention. 

Note that the emphasis in this design was on whether the intervention was effective. The 

counterfactual was not designed to enable us to isolate and tease apart the impact of technology 

as separate from curriculum. For example, one possible counterfactual might have been a 

SimCalc intervention without the software. We did not conduct this comparison because our 

intervention is fundamentally an integrated system that would have lost integrity had we 

removed the technology. Moreover, the counterfactual was not designed to determine whether 

the SimCalc intervention might be more effective than a paper-based curriculum covering similar 

content. Another possible counterfactual could have been non-SimCalc paper materials that 

addressed similar complex mathematics, written by either a third party or our own team. We 

could not find suitable materials and worried that if were the designers of the paper-only 

materials and found results in favor of the integrated technology condition, reviewers could 

easily argue that we purposely handicapped the paper materials. Thus we decide to leave it to 

further experimentation to examine whether alternative, better, or cheaper ways exist to achieve 

the same goal.  

Table 2 summarizes key contrasts between the Seventh-Grade and Eighth-Grade Studies. 

[----------INSERT TABLE 2 ABOUT HERE----------] 

Assessment Design and Development 

Because student achievement is the primary dependent measure for all the studies, we 

directed attention and resources to developing assessments that would meet rigorous standards 

for validity. We found that standardized tests (such as the TAKS [Texas Assessment of 
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Knowledge and Skills]) did not capture the conceptual depth students could reach using the 

SimCalc technology and curricula and thus using such tests for outcome measures would cause 

us to overlook potentially important impacts of the intervention. Thus, the research team decided 

to build its own assessments. We developed two, one for the Seventh Grade studies focusing on 

rate and proportionality and one for the Eighth-Grade Experiment focusing on linear function. 

Within each study, the identical assessment was administered at pretest and posttest. 

To develop valid and reliable assessments, we followed models of best practices in 

assessment development (e.g., AERA, APA, NCME, 1999) and drew on the tenants of Evidence 

Centered Design (ECD; Almond, Steinberg, & Mislevy, 2002; Mislevy, Almond, & Lukas, 

2003; Mislevy, Steinberg, & Almond, 2002).The ECD framework emphasizes the evidentiary 

base for specifying coherent, logical relationships among all essential assessment elements. Our 

assessment development process had three essential stages, as follows. 

In the first stage, we established a conceptual assessment framework and assessment 

blueprint. The blueprint had four dimensions: (1) complete coverage of all the M1 and M2 topics 

with subscales for each (see Table 1), (2) alignment with the state content standards (the TEKS), 

(3) various problem contexts (i.e., motion and money), and (4) a diversity of task types (about 

one third each of multiple choice, short response, construction of multiple mathematical 

representations). 

In the second stage, we developed a pool of assessment items. Using the blueprint as a 

guide to ensure coverage of all relevant concepts, the team drew from the instrument used in the 

pilot study, surveyed existing standardized tests (TAKS, NAEP, TIMSS, and other state tests) 

and literature for items, and created some new items. For example, on the Seventh-Grade 

assessment, one M1 item asks: “If 2 / 25 = n ⁄ 500, what is the value of n?” One of the M2 item 
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asks student to construct three different representations (table, algebraic expression, and graph) 

of a proportional relationship between price and number of tickets purchased for a raffle. 

In the third stage, we validated and refined the assessment items using empirical 

methods. First, we held a formative expert panel to review and rate items for alignment with our 

conceptual framework (Table 1), alignment with TEKS, and grade-level appropriateness. 

Members of the review panel were mathematicians, mathematics education researchers, and 

mathematics educators working in Texas. We used the ratings to select and refine appropriate 

items. Second, we conducted student cognitive think-alouds to obtain information about how 

individual students would solve the problems. This information enabled us to eliminate or revise 

questions that were ambiguous or that did not require the target skills to reach an appropriate 

answer. Third, we tested the items in the field. Using the refined items, we created a prototype 

test that satisfied all the constraints of our original blueprint. We tested the seventh-grade 

instrument in the field with a sample of 230 sixth- and seventh-grade students and the eighth-

grade instrument in the field with a sample of 309 eighth-grade students. We used both classical 

test theory and item response theory to characterize the technical qualities of the items. Fourth, 

we held a summative expert panel review in which two mathematics education experts who had 

been part of the original panel provided summative feedback on the revised items. For each item, 

the experts assessed the content alignment ratings made by the formative panel and, as necessary, 

recommended refinements to the items for better alignment with the content framework. 

The basic test specifications of the resulting assessments were as follows. The Seventh 

Grade rate and proportionality assessment had 30 items with an alpha of 0.86. The M1 subscale 

had 11 items with an alpha of 0.73, and the M2 subscale had 19 items and an alpha of 0.82. The 
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Eighth Grade linear function assessment had 36 items with an alpha of 0.91. The M1 subscale 

had 18 items with an alpha of 0.79, and the M2 subscale had 18 items and an alpha of 0.87. 

In addition, assessment administration procedures were established to minimize the 

possibility that teaching to the test could be a substantial confound in the interpretation of any 

findings. Teachers were not explicitly shown the instrument at any time, and each classroom set 

of assessments was provided in a sealed envelope with specific instructions to open the envelope 

only at the time of administration. Furthermore, there were no accountability pressures that 

might motivate teachers to deviate from the procedures or teach to the test. While some teachers 

may nonetheless be predisposed on their own to teach to the test, given random assignment, there 

was no reason that this predisposition would be more likely in either experimental group. 

Demographic and Implementation Measures 

To investigate our research question about robustness across diverse settings and to help 

contextualize any findings for mathematics learning, we collected data on student demographics 

and classroom implementation. Before teaching their units, teachers were asked to fill out a 

roster of the students in their classroom. For each student, teachers reported gender, ethnicity, 

and their subjective rating of the student’s prior achievement level as low, medium, or high. To 

allow this variable to reflect realistically teachers’ perceptions of students, teachers were left to 

determine their own criteria for their ratings of student achievement level. For each day the unit 

was taught, the teacher filled out a log page probing various aspects of implementation (e.g., 

pages covered in the workbook, mathematical topics covered, whether class was conducted in 

the classroom or the computer lab). In addition, school-level data were obtained through the 

Public Education Information Management System (PEIMS), a publicly available database 
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maintained and distributed by the Texas Education Agency, the state department of education. 

We measured several other variables, which are reported on elsewhere. Through 

implementation logs, surveys, and phone interviews, we measured many attributes of teachers 

(including professional background, beliefs, attitudes, teaching goals, and mathematics 

knowledge) and their experiences in the program. We also collected rich qualitative data through 

interviews with students and classroom observations to understand more fully student learning 

and variations in classroom implementation.  

Analysis Methods and Procedures 

These studies sampled intact classrooms (clusters of students), meaning that classic 

statistical models such as the t test or multiple regression models would be inappropriate without 

modification. In particular, with cluster sampling, standard models tend to underestimate the 

standard errors of key statistics and overestimate the statistical significance of results. These 

models can be corrected in several ways to account for the clustering of students within 

classrooms. In this study, we used multilevel modelling (MLM), specifically hierarchical linear 

modelling, to estimate the effects of the treatment (Raudenbush & Bryk, 2002). MLM accounts 

for measurement and sampling error at both the student and classroom level, resulting in 

correctly adjusted standard errors for the treatment effect.  

To model or conduct significance testing for our student achievement variables, one 

would normally fit two-level MLM models (students nested within classrooms, classrooms 

nested within schools), with the student scores as the outcome variable and the treatment group 

as a predictor at the school level. The school level is necessary to account for the proper degrees 

of freedom in the test statistics, since schools are the primary sampling unit. Within schools, 
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students are not independent but share common classroom characteristics with one another. In 

our case, however, over 70% of schools had only one teacher, rendering any estimate of the level 

2 variance components unreliable. We therefore collapsed our models to two levels (students 

nested within schools). 

In analyses of student achievement, one important decision is whether to focus on student 

gain scores (i.e., pretest score subtracted from posttest score) or posttest scores adjusted for 

pretests. In a randomized experiment, both methods yield unbiased estimates of the treatment 

effect (Maris, 1998). One analysis expressed the choice as follows: 

In their tribute to Fredric Lord, Holland and Rubin (1983) noted that the basis for Lord's 

Paradox is that an analysis of difference scores and an analysis of covariance are 

designed to answer different questions. An analysis of difference scores answers the 

question about whether students changed from the pretest to the posttest, whereas an 

analysis of covariance answers the question of whether students who have the same 

pretest scores will have different posttest scores. These are not the same questions and it 

is unrealistic to expect them to provide the same answers. (Campbell & Kenney, 1999) 

Because the treatment condition was randomly assigned (and therefore expected to have 

zero covariance with other predictors), either choice would be expected to yield an unbiased 

estimate of the treatment effect. However, when pretest scores potentially covary with other 

predictors (e.g., student gender), estimates of the impact of those predictors will be biased. In our 

analyses, we wanted to examine the gains of students across a variety of categories such as 

gender, and pretest scores were significantly correlated with many such student categories. In our 

research, the goal was to answer the question of whether students’ performance changed, so the 
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use of gain scores was more appropriate. 

We constructed a multilevel model as follows. The first level predicted student gain 

scores as a function of a school-specific intercept and P student level covariates. 

Level 1 (Student): ( )
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At level 2, the school-specific intercept was modelled as the sum of a grand mean, a fixed 

effect for treatment assignment Tj, Q school-level covariates and a random deviation.  

Level 2 (School): ( )
0 00 01 0

q
0j j q j

q Q

T Wβ γ γ γ
∈

= + + + ju∑  

As it turns out, tests for random slopes for all student-level covariates were non-

significant, so all βpj in the Level 1 equation are modelled as fixed effects (set equal to the 

corresponding γp0). 

All models were fit using the xtmixed procedure within Stata version 9 and restricted 

maximum likelihood estimation. Continuous covariates were grand-mean centered, whereas 

categorical variables were represented as 0/1 indicators. In testing the impact of mediating 

variables (i.e., student gender, student ethnicity, teachers’ ratings of student prior achievement 

levels, location in Region 1, and percentage of students in the school receiving free or reduced-

price lunch), we fit multiple models, each adding a single fixed covariate (at the student or 

school level) and interaction with the treatment indicator to the model. We managed the risk of 

inflated Type I error rates by using the false discovery rate procedure of Benjamini and 

Hochberg (1995). This procedure ensures that fewer than 5% of the reported statistically 

significant results within a logical family of comparisons will be due to Type I error. 
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Recruitment and Assignment to Condition 

As discussed above, we recruited through the Dana Center and regional Education 

Service Centers (ESCs) throughout Texas. ESCs are public organizations (affiliated with the 

Texas Education Agency) that provide supports for schools and districts in their region. By 

working with the Dana Center and with ESCs, the SimCalc project team could use the existing 

network of professional development service providers with strong connections to teachers and a 

positive track record in the eyes of Texas teachers. 

In both studies, we sought to recruit teacher volunteers whose students reflected the 

regional, ethnic, and socioeconomic diversity of the state. In sampling broadly, to overcome a 

possible threat to validity that might have resulted from biased attention to the schools the ESCs 

already had relationships with, the ESCs were given a protocol and instructions about how to 

approach districts, school mathematics coordinators, principals, and teachers in an unbiased, 

systematic way. ESCs were instructed to recruit as many applicants as possible to ensure a 

diverse sample of teachers and students. A school had to meet two requirements for its teachers 

to be invited to participate: it had to have enough computers (we could not afford to buy 

computers for schools) and its leadership needed to give consent for teachers to participate. 

We performed selection and random assignment at the school level; that is, if we 

accepted one mathematics teacher from a school, we would accept all applicant mathematics 

teachers from that school and assign them all to the same condition. There were three rationales 

for this. First, best practices in professional development provide teachers with an in-school 

community to integrate new materials and practices. Second, with respect to the research design, 

we sought to avoid problems of cross-contamination among groups by having teachers who work 

closely together communicate about interventions in the different groups. Third, the majority of 
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schools had only one teacher anyway (77% of the 73 schools in the Seventh Grade studies and 

72% of the 56 schools in the Eighth-Grade Experiment). 

Once a pool of applicants was generated, we randomly selected teachers by (1) creating a 

randomly ordered list of all applicant schools and (2) selecting schools from this list, alternating 

assignment to the treatment group and the control group until we met our quota for sample size 

in each group (140 in the Seventh-Grade Experiment; 80 in the Eighth Grade Study). 

We decided not to recruit for the Eighth-Grade Experiment in schools already 

participating in the Seventh-Grade Experiment; therefore, none of the students participating in 

the eighth-grade SimCalc replacement unit had studied the seventh-grade unit in the same 

school. 

Participants 

The Appendix shows the sample characteristics, illustrating the diversity of regions, 

teacher demographics, and student demographics. A technical report (Tatar & Stroter, 2009) 

examined the diversity of the seventh- and eighth-grade samples, as well as their 

representativeness relative to broader populations. The samples were diverse in terms of campus 

poverty levels, school size, and campus ethnicity. They were also diverse in terms of teachers’ 

gender, ethnicity, years of teaching experience, highest degree obtained, and mathematical 

knowledge. Comparisons were made to the population in the Texas regions in which the 

experiments were conducted, as well as to the state of Texas as a whole. For all variables for 

which we had data at the regional and state levels, the ranges and means were similar among our 

samples and the middle school mathematics teaching population by region and in the state. Note 

that the low percentages of African-American teachers and students, as well as schools from 
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large urban settings, reflect their small populations in the regions in which the experiments were 

conducted. Further studies may be needed to examine generalizability of findings to those 

populations. 

Whereas seven of the 20 geographical regions in Texas participated in the studies, of 

particular note is the participation of Region 1 because of its unique demographic and 

socioeconomic characteristics. Region 1 is in the Rio Grande Valley adjacent to the Mexican 

border. It has one of the highest poverty levels in the United States and is predominantly 

Hispanic. Region 1 participated in the Seventh-Grade Studies; however, because of a shift in 

local circumstances in the year between recruitment for the two experiments (i.e., the region 

received a large grant for a major reform in mathematics instruction), the region did not 

participate in the Eighth-Grade Experiment. 

While there was overall attrition in each of the studies, there is evidence that attrition was 

not differential across experimental groups. In the Seventh-Grade Studies, 140 teachers were 

accepted into the study, 117 attended the workshop (16% attrition), 95 teachers completed Year 

1 (23% attrition), and 67 teachers completed Year 2 (29% attrition). When asked why they 

dropped from the program, teachers reported reasons that were not related to the project itself 

(e.g., reassignment or promotion, personal reasons, relocation). In the sample of 95 classrooms 

that completed the Year 1 experiment, there were no statistically significant differences between 

groups on any of the student, teacher, or school level variables we examined. 

For the Seventh-Grade Quasi-Experiment, we considered data from only the 30 delayed-

treatment teachers who finished both Year 1 and Year 2. In a quasi-experiment in which 

participants are not randomly assigned to treatment groups, the primary internal threat to validity 

is the possibility of nonequivalence of groups, which we examined between years at the student 

 



  35 35

level (the teachers and schools were the same each year). The groups were equivalent with 

respect to all variables except gender. This difference is not a strong threat to the validity of the 

study; as shown below, the baseline assessment scores were equivalent across the groups, and 

gender was not shown to significantly predict student learning. 

 In the Eighth-Grade Experiment, 88 teachers were accepted into the study, 63 attended 

the workshop (28% attrition), 56 teachers completed the study (11% attrition). In the sample of 

56 classrooms that completed the study, the treatment and control groups were equivalent on all 

variables except student ethnicity, in which there was a higher percentage of Hispanic students in 

the treatment group. This small difference is not a strong threat to the internal validity of the 

study; again, as shown below, the baseline assessment scores were equivalent across the groups, 

and ethnicity did not significantly predict student learning in either experiment. Also, in the 

Eighth-Grade Experiment, the greater number of teachers in the treatment group was an artifact 

of teachers’ scheduling conflicts with the workshops to which they were assigned. Because 

teachers were not informed about the workshop type until the workshop actually occurred, the 

consequences for randomization and thus the validity of the experiment are minimal. 

Experimental Procedure 

In each study, we used tightly controlled experimental procedures to minimize the 

possibility of bias across groups. We designed the treatment and control procedures to be almost 

identical with the exception of which unit was implemented. Each year, teachers attended their 

designated workshop(s) at their regional ESC. To ensure that they all had a consistent 

understanding of the research, all teachers were shown a video at the beginning of the summer 

workshop that explained the research project and procedures. Early in the school year, teachers 
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received a package that contained classroom sets of relevant instructional materials and 

assessments, a logbook, and supplies to mail the completed materials back to the research team. 

To establish the focal instructional unit, teachers were asked to determine which unit in their 

curriculum was most pertinent to the mathematical content of the replacement unit. In the 

treatment groups, teachers were asked to replace that unit with the SimCalc replacement unit. In 

the control groups, teachers were asked to teach the unit as they usually would. To establish a 

target classroom for the research, the research team randomly assigned a period number to each 

teacher. In the log and follow-up interviews, teachers reported that they actually did collect data 

with their selected target class (i.e., rather than selecting their own).Teachers administered the 

student assessments immediately before teaching the unit and immediately after teaching it. Each 

day of the unit, they filled out a page in the logbook. After completion of the postunit 

assessment, teachers returned the assessments and daily logs to the research team via mail. 

Within each experiment, teachers received the same stipend regardless of which 

condition they participated in. In the Seventh-Grade Studies, teachers received a stipend of 

$1,000 per year, and in the Eighth-Grade Experiment, teachers received a stipend of $500 for the 

year. 

Results 

The results are reported in three sections: (1) the main effects of the treatment, (2) the 

robustness of the main effects across participant groups, and (3) implementation variables. 

Main Effects of Treatment 

Two-level MLM analyses were used in all three studies to show that the main effect was 

statistically significant, demonstrating that students who had the SimCalc intervention learned 
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more than control students who had the business as usual curricula. Table 3 shows that in all 

three studies, although the treatment and control groups began with similar pretest scores, 

treatment students had significantly higher gains from pretest to posttest. In all three studies, the 

effect sizes were large and educationally significant, particularly for the M2 portion of the tests. 

As Figure 2 illustrates, the gains differences between the two groups in all three studies occurred 

mostly on the M2 portion of the tests.  

[----------INSERT TABLE 3 ABOUT HERE----------] 

 [----------FIGURE 2 ABOUT HERE----------] 

Robustness of Learning Gains Across Participant Groups 

To what extent are these findings robust across subpopulations and settings? To address 

this question, we examined whether the intervention was effective across five policy-relevant 

demographic factors: student gender, student ethnicity, teachers’ ratings of student prior 

achievement levels, whether the school was located in Region 1, and percentage of students in 

the school receiving free or reduced-price lunch.. 

We began by first examining the extent to which some students in these groups may have 

begun at a relative disadvantage. Within each study, we ran a series of two-level MLM models 

predicting student M2 pretest scores, one for each of the five demographic factors, entering the 

factor independently as a covariate at the appropriate level. Overall, we found that all of the 

factors, except being located in Region 1, significantly predicted M2 pretest in all three studies at 

a significance level of p < 0.01 or lower, indicating baseline disadvantages for traditionally 

underserved populations. Specifically, girls started lower than boys, Hispanic students started 

lower than other students, students rated as low or high achieving by their teachers started lower 
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or higher respectively than those rated as medium achieving, and the higher the percentage of 

students qualifying for lunch programs in the school, the lower the pretest scores. 

We then examined the extent to which students in these groups may have had differential 

gains. Within each study, we ran a series of two-level MLM models predicting student M2 gain 

scores, one for each of the five demographic factors, entering the factor independently as a 

covariate at the appropriate level. These models also included as covariates an indicator for the 

experimental group and the factor by group interaction. 

Table 4 and Figure 3 summarize the gain models. In the two main experiments, 

population factors did not predict student learning gains except for those students rated as low 

achievers. However, in the Seventh-Grade Quasi-Experiment, ethnicity, region, and percentage 

receiving free or reduced-price lunch in the school negatively predicted learning gains. The 

specific findings were as follows:  

1. Student gender. Whereas boys started out with higher pretest scores, there were no main 

effects or interactions for the learning gains.  

2. Student ethnicity. Although Hispanic students started out with lower pretest scores, there 

were no main effects or interactions for learning gains in the two main experiments. In 

the Seventh-Grade Quasi-Experiment, however, there was an interaction such that 

Hispanic students using SimCalc in Year 2 had lower learning gains than their            

non-Hispanic counterparts. 

3. Teachers’ ratings of student prior achievement levels (low, medium, and high). In all 

three studies, students at all three achievement levels gained more in the SimCalc 

replacement unit than their peers studying the ordinary curriculum; however, there were 
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also interactions in the seventh-grade studies (but not the Eighth-Grade Experiment) such 

that students in the SimCalc replacement units rated as low had lower gain scores than 

students rated as medium or high. 

4. Region 1 (Seventh-Grade studies only). In the Year 1 experiment, there was no main 

effect and no interaction. In the Seventh-Grade Quasi-Experiment, however, there was an 

interaction such that Region 1 students using business as usual curriculum in Year 1 had 

higher learning gains than their counterparts in other regions, and students using SimCalc 

in Year 2 had lower learning gains than their counterparts in other regions.  

5. Percentage receiving free or reduced-price lunch. Although this variable was a strong 

negative predictor of pretest scores, there was no main effect or interaction for the 

learning gains in the main experiments. In the Seventh-Grade Quasi-Experiment, 

however, there was an interaction such that in Year 2 when students used SimCalc, this 

variable was a negative predictor of learning gains. 

[----------INSERT TABLE 4 ABOUT HERE----------] 

[----------INSERT FIGURE 3 ABOUT HERE----------] 

Implementation Variables  

We collected a large set of implementation measures. We created a correlation matrix and 

found that most variables had either no correlation to student outcomes, or had inconsistent 

correlation to student outcomes across studies. Because presenting this data and discussing 

possible explanations of the patterns does not bear on the main effects reported herein, we plan 

to report this information in a subsequent technical report. We have chosen to report herein only 

three variables, each of which bears on SimCalc program theory: use of technology, days spent 
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on the unit, and topic coverage. By considering these variables, we are in a better position to ask 

whether the intervention worked for the reasons its developers espoused.  

Use of Technology 

Syntheses of prior research support the role of technology-based representations in 

student learning of cognitively demanding mathematics, especially relative to conceptual 

understanding (Heid & Blume, 2008). It was not a purpose of these experiments to isolate the 

contribution of technology to student learning but to consider whether implementation data were 

consistent with prior research on the role of technology.  

We created a proxy measure for the amount of computer use by counting the days 

students spent in the computer lab as recorded by teachers in their daily log. This is admittedly a 

coarse approximation of actual computer use. Yet case studies and follow-up interviews 

confirmed that teachers used the time in the computer lab to engage students in using the 

MathWorlds software. Our computer use measure was collected for only the two main 

experiments. As would be expected, students in the SimCalc replacement unit spent much more 

time in the computer lab than those in the control in both the Seventh-Grade Experiment Year 1 

[an average of 41.5% and 3.5% of the days in the treatment and control groups, respectively; 

t(93) = 8.0, p < .0001] and the Eighth-Grade Experiment [an average of 72.8% and 6.6%, 

respectively; t(54) = 9.4, p < .0001]. Further, the amount of time spent in the computer lab was a 

predictor of student learning gains in the Eighth-Grade Experiment (z = 2.5, p < .05 for the 

interaction term of days in computer lab by condition). However, this finding was not replicated 

in the Seventh-Grade Experiment (z = 0.24, p = .81, n.s.). Technology use is an important aspect 

of SimCalc program theory, and our findings are consistent with this feature of the theory. 
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Days Spent on the Unit 

By considering the number of days teachers spent on the unit and their self-report of topic 

coverage, we can ask whether student learning gains with the SimCalc intervention followed 

merely from spending more time on the content or whether it resulted from using time more 

effectively. We measured the number of days teachers spent on the unit by triangulating among 

three data sources: a calendar they used to mark the days they taught the unit, the number of log 

pages they filled out, and the dates the pretest and posttest were administered. 

Across the studies, differences between groups were small and inconsistent. In the 

Seventh-Grade Experiment Year 1, immediate-treatment teachers spent a mean of 14.9 days (SD 

= 8.6) teaching the replacement unit and delayed treatment spent a mean of 12.0 days (SD = 4.6) 

on their business as usual curriculum. The difference between groups was significant (t(93) = 

2.0, p < .05). When one outlier teacher (who reported spending 66 days on the SimCalc unit) was 

dropped from this analysis, the mean difference between groups dropped from 2.9 to 1.8, but was 

still significant at the p = .05 level. In the Seventh-Grade Quasi-Experiment, there was a 

nonsignificant trend that the delayed treatment teachers spent less time teaching the SimCalc unit 

in Year 2 (10.9 days, SD = 2.9) than they had spent teaching their business as usual curriculum in 

Year 1 (12.0 days, SD = 4.6; t(29) = 1.2, p = .23, ns). In the Eighth-Grade Experiment, there was 

also a nonsignificant trend that teachers spent less time teaching the SimCalc replacement unit 

(12.4 days, SD = 4.1) than their counterparts spent teaching the business as usual curriculum 

(15.2 days, SD = 7.3; t(54) = 1.9, p = .07, ns). 

Also, across all three studies, there was not a significant correlation between the number 

of days spent teaching the unit and M2 gains. These findings provide evidence against a claim 

that time on task explains the main effects.  
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Topic Coverage 

We also asked teachers to report the topics they covered each day in their logbook. These 

topics were aligned with the topics covered in the curriculum and assessment, as outlined in 

Table 1. As appropriate to each study, in the Seventh-Grade Studies, teachers were given a list of 

12 topics, and in the Eighth Grade study, teachers were given a list of 5 topics. Specifically, 

teachers were asked to answer the question, To what extent did your class focus on the following 

topics? Teachers checked boxes on a 4-point Likert scale ranging from (1) not at all to (4) a 

major focus. We considered teachers as covering a topic in a given day if they selected a 3 or 4 

on the scale. Teachers were not limited in the number of topics they could rate as a 3 or 4. We 

then counted the number of days a teacher covered each topic. 

In the Seventh-Grade Studies, we saw a pattern of results that fits the program theory 

(Figure 4). First, teachers in both groups reported spending many days on basic operations (e.g., 

how to calculate; how to do basic arithmetic), and the only significant difference was that 

teachers spent more days on this in Year 1 of the quasi-experiment when they did their business 

as usual curriculum. This suggests that for the most part the material did not substitute advanced 

for basic mathematics; basic mathematics was still a major focus. Second, note the shift from 

emphasizing a/b = c/d to y = kx that was significant in the experiment and a strong trend in the 

quasi-experiment. Accomplishing this shift was a major intention of SimCalc program, yet all 

teachers were encouraged to make this shift in the preliminary TEXTEAMS workshop they 

attended. It appears that the SimCalc program helped the teachers implement the desired shift. 

Further, when teacher used the SimCalc intervention they reported considerably more coverage 

of topics that are signature aspects of the SimCalc unit—mainly the use of multiple 

representations and reasoning comparatively about more than one function. These findings show 
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that when teachers used the SimCalc intervention they interacted with the SimCalc materials in a 

way that concentrated on more advanced topics without neglecting basic operations. 

[----------INSERT FIGURE 4 ABOUT HERE----------] 

We found a similar pattern of results in the Eighth-Grade Experiment. Teachers in both 

groups reported spending about the same number of days on categorizing functions as 

proportional, linear, or nonlinear (Figure 5).They also reported similar time on using algebraic, 

tabular, or graphical representations of linear functions, for example, to find unknowns, identify 

a point on a graph, or add a missing value to a table. In addition, they reported similar time on 

translating across representations. These findings support the theory that the SimCalc materials 

afforded teachers an opportunity to concentrate on more advanced topics without neglecting the 

core of the state standards.  

[----------INSERT FIGURE 5 ABOUT HERE----------] 

Discussion 

In these two randomized experiments and a quasi-experiment, we found a causal 

relationship between classroom implementation of a SimCalc replacement unit and student 

learning of more advanced mathematics. Several findings held true across all studies. SimCalc 

students learned advanced aspects of the target mathematics concepts (M2) without sacrificing 

gains on the mathematics measured by the state test, in two studies without spending more time 

on the material. Indeed, for the simpler aspects of the target concepts (M1), students of teachers 

who used the SimCalc replacement unit showed a trend toward greater gains that was 

nonsignificant in the two experiments and statistically significant in the quasi-experiment. These 

findings are consistent with the SimCalc program philosophy of increasing opportunities to learn 
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advanced mathematics within the context of the topics already included in the curriculum. 

The counterfactuals in the two experiments and quasi-experiment were designed to 

minimize threats to the internal validity of the study and enable causal attributions of the effects 

on student learning due to implementation of the SimCalc intervention (Campbell et al., 2001). 

Because the seventh-grade studies provided all teachers with equal information about the target 

student learning outcomes (i.e., the functional approach to rate and proportionality), provided all 

teachers with materials they could use to address these outcomes (SimCalc or TEXTEAMS), and 

measured student learning before and after the classrooms covered relevant content, we reduced 

the possibility that differences in teacher awareness of instructional goals or lack of availability 

of relevant materials confound the findings. In particular, Texas educators consider the 

TEXTEAMS workshop to be useful materials for enabling teachers to teach the measured 

mathematics concepts. Note that our study is not a comparison of SimCalc and TEXTEAMS 

because we provided all teachers with the same TEXTEAMS workshop and materials; the 

experimental group received the TEXTEAMS training immediately before receiving the 

SimCalc training. Because the Eighth-Grade Experiment provided equal-duration summer 

workshops for all teachers, introduced all teachers to representational technology, and 

emphasized advanced mathematics, we reduced the possibility that differences in the duration of 

professional development confound the findings; the specific SimCalc materials supplied to 

teachers for classroom use are implicated in the observed effects.  

Another possible threat to internal validity might have been the Hawthorne effect. Brown 

(1992) describes the Hawthorne effect as the conjecture that any intervention tends to have 

positive effects merely because of the attention participants get from the researchers. If one 

group feels particularly singled out in a positive or negative way, its performance may be 
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influenced. To counter the possibility of the Hawthorne Effect, we were careful to design 

counterfactuals to give teachers high-quality professional development experiences and 

materials. Further, we designed all presentations and materials for teachers to emphasize equally 

the importance of participation in this research.  

Note that in the literature, pilot study, and subsequent data collection in the Seventh-

Grade Studies, we found no evidence that suggested that teachers would favor one condition 

over the other. Mathematics teachers are less likely than any other teachers to use computing 

technology in instruction (Becker & Anderson, 1998). Computers are widely seen as too difficult 

to use, not worth the time commitment, and even extraneous to “real” mathematics. In the phone 

interviews we conducted during the pilot study, many control teachers expressed relief that they 

were not in the 5-day workshop and did not have to bother with technology and the computer 

lab. Yet in interviews in the pilot with teachers about their experience as being part of the control 

or the treatment group, we found no substantial differences. This increased confidence that we 

would not be testing a differential effect of attractiveness or unattractiveness between groups in 

the full experiment. In addition, close coupling of the cognitive demands of the SimCalc 

intervention and student assessment would argue against the Hawthorne effect. As Brown (1992) 

points out, a true Hawthorne effect is a concern only if the outcome measure is extremely 

general, such as “feeling in control,” and not tightly aligned with the intervention’s cognitive 

goals. 

A possible threat to external validity and generalizability is that our outcome measures 

were developed within the project to be aligned with the project goals. Methodologically, we 

chose to develop our own assessment because the Texas state test would not have assessed 

knowledge of the target M2 content. While there is a danger of overalignment between our 
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intervention and measures, as we described in our assessment development process, we have 

been explicit in the development of our conceptual assessment framework, vetting the content 

with experts in the field and collecting several sources of empirical evidence (expert panel 

review, cognitive think-alouds, field testing) to support the validity of our assessment argument. 

While we may not have examined outcomes with other instruments, we have extensive empirical 

support for the specification of the knowledge, skills, and abilities that were tested. 

Finally, we see the consistent replication of our experiments with variations in sample 

and setting (a wide variety of teachers and schools around the state of Texas), treatments 

(replacement units), and outcomes (assessments) as good cause to reject the idea that the findings 

result from experimental artifacts. 

In addition, we found the main effects to be robust. Our sample included the more 

cosmopolitan Dallas-Fort Worth and Austin areas as well as the uniquely Texan western and 

border regions of the state. Schools within these regions varied in poverty and prior achievement 

levels. Within those schools were teachers with different backgrounds, practices, beliefs, and 

attitudes. And within the schools, were boys and girls who came from White, Hispanic, and other 

ethnic backgrounds and had different levels of prior achievement. 

In all comparisons in the Seventh- and Eighth-Grade Studies, we found that while gender, 

ethnicity, and socioeconomic status were associated with students’ baseline test scores, learning 

gains were equitable across all subpopulations. In the Seventh-Grade Quasi-Experiment, 

however, ethnicity, region, and socioeconomic status were associated with learning gains. An 

important shift in the population occurred in the Seventh-Grade Quasi-Experiment; many 

teachers in Region 1 dropped out. While other poor and Hispanic campuses remained in the 

study, these campuses may differ from the campuses in Region 1. Another possible explanation 
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is suggested by teacher interviews: after teaching the unit a first time, teachers reported a belief 

that it was more appropriate for high achieving students (a belief which is not supported by our 

data). Teachers in the quasi-experiment were teaching with SimCalc a second time and may have 

oriented their teaching away from traditionally underachieving students.  

As in any experiment, these findings should be interpreted with caution. First, the gains 

applied to more advanced (M2) mathematics. Consequently, schools may not see benefits unless 

they assess more advanced reasoning. If a school’s only goal is to increase scores on the basics, 

the SimCalc intervention may not be appropriate. Second, the results were obtained in Texas, a 

state with a long record of a stable standards-based educational system and an ability to 

implement a train-the-trainer model across regions. Results may vary in states with different 

contexts. Third, although we view replacement units as a good strategy to fit within school 

constraints, the tested replacement units occupied only a modest amount of instructional time. 

We do not yet know the consequences of more extended uses of such units and do not 

necessarily recommend using software every day; software use may be most useful when 

targeted specifically at the conceptually advanced aspects of mathematics learning. Fourth, our 

samples lacked any majority African American school. Fifth, we worked with volunteer teachers 

and do not know how well nonvolunteer teachers would fare. Sixth, we required schools to have 

access to a classroom set of computers, but not all schools have suitable computer facilities. 

Seventh, we tested an intervention that incorporated only one kind of software and not others. 

Other software and hardware technologies emphasize dynamic representations, including 

graphing calculators, dynamic geometry software (e.g., The Geometer’s Sketchpad, Cabri 

Géomètre), and dynamic statistics packages (e.g., TinkerPlots, Fathom). But there are also many 

technologies for mathematics learning that are not included in this family. We do not know 
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whether these results will generalize within or beyond the category of representational tools or 

dynamic mathematics tools. 

Refinements to SimCalc Program Theory 

The slogan of the SimCalc program is “democratizing access to the mathematics of 

change and variation.” Given the robustness findings, it is fair to say that the materials provide 

students in a wide variety of settings with access to more advanced mathematics while providing 

ample opportunity for them to make progress on the basics for which schools are most 

accountable. The intervention might have greater impact with more attention on the interaction 

between teacher-reported achievement level and student learning gains within classrooms. In 

both the seventh- and eighth-grade experiments, teacher-reported achievement expectations 

correlated with student gains. In interviews after implementation of the intervention, we noted 

that many teachers reported a belief that these materials are more appropriate for their high-

achieving students. To the contrary, our findings suggest that the materials are better than the 

existing materials for students in all teacher-reported achievement categories. It could be that 

with further professional development, teachers could learn to more effectively use these 

materials with students they believe are low or medium achievers. In case studies conducted 

within the context of our experiments, we are examining this possibility. 

We discussed three implementation variables that suggest how the intervention worked. 

An important student resource dimension of the intervention is use of computer software. 

Although the data reported here are only a proxy for actual student use of SimCalc MathWorlds 

software, we did see that students in the intervention went to the computer lab more frequently 

and that more days in the computer lab led to greater student learning gains. We are further 
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pursuing understanding the role of the technology through case studies, which are based on video 

recordings of classrooms, and analyses of the teacher interviews conducted after implementation. 

So far, these data are consonant with the program theory, which is that the SimCalc MathWorlds 

software provides a representational infrastructure that better supports student learning (Empson, 

2009; Dunn, 2009). We hasten to add that this study should not be interpreted as a 

technology/no-technology comparison. SimCalc program theory emphasizes the integration of 

professional development, curriculum, and representational technology, and our experiments 

were designed to test the integration and not to isolate the effect of one component. 

An important teacher-resource dimension was teachers’ self-reports of their topical focus 

for each day’s class. We found that teachers in the two groups reported emphasizing different 

topics. In both seventh and eighth grade, teachers in both groups emphasized basic skills and the 

content covered by the Texas state test to approximately the same degree. In addition, in both 

seventh and eighth grade, SimCalc teachers placed greater emphasis on advanced mathematics. 

Thus, SimCalc teachers reported expanding the range of mathematics they covered to include 

more advanced concepts; they did not report neglecting more basic topics in favor of more 

advanced ones. In the Seventh-Grade Experiment Year 1, in a previous paper we also examined 

teacher self-reports of their daily teaching emphasis in terms of cognitive demand, ranging from 

a focus on facts and routine procedures (low demand) to a focus on conceptual understanding 

and nonroutine problem solving (high demand). We found that teachers in the SimCalc condition 

reported emphasizing high-demand tasks more frequently and that the more teachers reported 

this emphasis, the more their students learned (Roschelle, Shechtman et al., 2008). This is 

particularly important in light of the finding that teachers in both groups spent about the same 

number of days on the target unit, because it suggests an intensification of mathematics learning 
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within the same number of days. This, too, is consonant with SimCalc program theory. 

While we are further investigating teacher-student interactions in case studies using 

video, we have little reason to suspect that the SimCalc intervention operates by changing how 

teachers interact with students (Empson, 2009; Dunn, 2009). Within SimCalc classrooms, one 

dissertation researcher using videotapes from the Seventh-Grade Experiment Year 1 has found a 

correlation between teacher behavior and student learning. Teachers who were more responsive 

to student ideas and presented students with more challenging mathematical tasks were likely to 

have higher learning gains (Pierson, 2008). Our interpretation of these data is that most teachers’ 

existing pedagogies are good enough to permit a successful SimCalc implementation in the first 

year, but high-quality teacher-student interactions can augment the impact. 

Some pedagogies might lead to greater learning with the SimCalc materials. Indeed, the 

program developers have strong beliefs that highly interactive pedagogies are more beneficial to 

students than teacher-centered pedagogies. Yet one set of case studies (Empson, 2009) found that 

different configurations of SimCalc learning resources can be successful; it is not empirically 

clear that there is one best pedagogy for teaching with these materials. In addition, more 

professional development is likely to be necessary to sustain and expand implementations across 

many years. The program developers believe that the software and curriculum materials can 

support strong mathematical argumentation in the classroom; teachers may need long-term 

professional development to improve their support for mathematical argumentation practices. 

The project team is working to mine additional findings from the large dataset. Our future 

work includes case studies in selected classrooms, using MLM to model the impact of 

background and implementation variables, analysis of interview data from teachers, analysis of 

the mathematics at the level of particular items on the test, and many other more detailed 

 



  51 51

inquiries. We are also examining sustainability, although this particular set of experiments was 

optimized to examine other research questions, not to examine or increase the odds of long-term 

adoption in Texas schools. We are particularly interested in understanding how variation at the 

school and teacher levels affects student learning but observe that robustness runs counter to 

finding strong moderating variables. Future studies in settings with other populations (e.g., more 

African American students, more urban students) and longitudinal studies would complement 

our research to date.  

Conclusions 

We designed a series of randomized controlled experiments to evaluate an integration of 

teacher professional development, paper curriculum, and representational software. The 

materials were developed via design research methods and previously had been evaluated only in 

small numbers of classrooms. We addressed robustness not only by including many teachers 

with different backgrounds, attitudes and levels of mathematical knowledge in our study, but 

also by testing the intervention in a variety of settings. Further, we based our work on existing 

scaling mechanisms by which innovations are spread from a central point to many regions, 

schools, teachers, and students within Texas. In addition, we gave teachers a modest amount of 

support (i.e., about 3–5 days of professional development), well within the range of what many 

school districts could afford. Our eighth-grade experiment used a train-the-trainers model of 

professional development delivery, another realistic element at scale. 

To our knowledge, this is the first series of randomized controlled experiments to 

examine the effects of representational technologies in improving student learning using 

multilevel modelling. Other research has involved different kinds of technology or research 
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methodologies with less power to support causal claims. In particular, the prominent Dynarski et 

al. (2007) study was widely interpreted to suggest that technology has no effect on mathematics 

learning. Similarly, the National Mathematics Advisory Panel (2008) found little scientific 

evidence for the effectiveness of technology in mathematics learning. In this context, the 

replication of our findings across three studies in both seventh and eighth grade contributes to the 

literature by providing evidence from three experiments that a different approach to technology 

can produce robust effects. The SimCalc approach is distinguished from the interventions 

considered in the Dynarski et al. (2007) studies in that representational technology was the focus 

and the SimCalc program emphasized tight integration of curriculum, technology and teacher 

professional development. The kind of technology and the level of curricular integration may 

matter a great deal in the effects of incorporating technology in mathematics education. 

We are well aware that this result was obtained for a curriculum unit of limited duration; 

a logical next step would be to expand to cover more of seventh and eighth grade mathematics. 

The SimCalc MathWorlds software is one instance of software that takes a representational 

approach. Dynamic Geometry computer software (e.g., The Geometer’s Sketchpad, Cabri 

Géomètre) is also well established and has been deeply theorized (Lehrer & Chazen, 1998; 

Laborde, 2000) but has not been subjected to experimental trials across settings. Dynamic 

representational software for statistics is also available (Konold, 2002). We observe that the 

combination of dynamic algebra, geometry and statistics software could cover the central topics 

in middle school mathematics, for example as described in the NCTM Focal Points (National 

Council of Teachers of Mathematics, 2007). Thus a logical next step would be to expand the 

approach of integrating software, curriculum and teacher professional development to cover the 

key ideas in algebra, geometry, and statistics in all of seventh and eighth grade. 
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It is perhaps particularly interesting that this approach enabled students to both learn the 

basics as required by federal and state mandates and learn more advanced mathematics on the 

pathway to Algebra, an important policy goal. If we had only measured the basic skills required 

in Texas, we would have obtained a null result. Technology may be particularly valuable in 

mathematics education when educators seek to go beyond the basics. Educators who wish to go 

beyond the basics may be able to use representational technology to intensify instruction and 

thus cover both the basics and more advanced skills and concepts.  

In terms of broader recommendations to the field, we see this work as suggesting that less 

emphasis should be placed on the value of technology alone and more on interventions that 

deeply integrate professional development, curriculum materials, and software in a unified 

curricular activity system. We select the word “activity” with care based on our observation that 

all elements of the SimCalc intervention align around enacting particular activities in the 

classroom (in contrast to a focus on lessons, assessments, or projects). Through our research we 

observed the complexity and variability in implementing these activities in classrooms. More 

research is needed to understand the design features of curricular activities that allow for 

adaptation to different student populations and teaching styles without undermining 

effectiveness. 
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APPENDIX 

 SAMPLE CHARACTERISTICS 

Sample Sizes by Study and Group 
 

Seventh-Grade Year 1 
Experiment 

Seventh-Grade Quasi-
Experiment Eight-Grade Experiment 

Group NTeachers NStudents* Group NTeachers NStudents* Group NTeachers NStudents* 
Delayed 47 825 Year 1 510 Control 23 303 
Immediate 48 796 Year 2 30 538 Treatment 33 522 
Total 95 1,621 Total 30 1,048 Total 56 825 
*Only students for whom we have complete data (both pretest and posttest) are included here. 
 
 
Teacher Characteristics 
 

Seventh-Grade Year 1 
Experiment 

Seventh-Grade 
Quasi-Experiment 

Eighth-Grade 
Experiment 

Variable Delayed Immediate 

Delayed-treatment 
teachers who 

completed Years 1 
and 2 Control Treatment

Total count 47 48 30 23 33 
Teachers by region  

Region 1 (Edinburg) 
Region 9 (Witchita Falls) 
Region 10 (Dallas) 
Region 11 (Fort Worth) 
Region 13 (Austin) 
Region 17 (Lubbock) 
Region 18 (Midland) 

 
11 
-- 
-- 
13 
13 
-- 
10 

 
8 
-- 
-- 
14 
11 
-- 
15 

 
6 
-- 
-- 
8 
8 
-- 
8 

 
-- 
4 
4 
-- 
10 
5 
0 

 
-- 
3 
8 
-- 
13 
6 
3 

Female (%) 81 77 80 82.6 84.8 
Years teaching total 
     Mean 
     Range 

 
10.5 
1–29 

 
12.4 
1–40 

 
10.3 

1–27 (+1 in year 2) 

 
9.6 

0–27 

 
7.9 

0–31 
Years teaching mathematics 
     Mean 
     Range 

 
9.5 

1–29 

 
11.0 
1–40 

 
9.0 

1–27 (+1 in year 2) 

 
9.9 

0–27 

 
8.2 

1–32 
Teacher ethnicity (%) 

White 
Hispanic 
Asian 
African American 

70.2 
25.5 
4.3 
0 

77.1 
20.8 

0 
2.1 

 
70.0 
23.3 
6.7 
0 

 
87.0 
8.7 
0 

4.3 

 
78.8 
15.1 

0 
6.0 

Master’s degree (%) 17.0 18.8 16.7    26.1 * 6.0 
* p = .06 
Note: Significance tests compared groups within study using a two-level MLM model. Within each study, 
no significant differences existed between groups on any of these variables. 
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School Characteristics 
 

Seventh-Grade Year 1 
Experiment 

Seventh-Grade 
Quasi-Experiment 

Eighth-Grade 
Experiment 

Variable Delayed Immediate 

Delayed-treatment 
teachers who 

completed Years 1 
and 2 Control Treatment

Total count of schools 37 36 25 19 23 
Total campus enrollment 
     Mean 
     Range 

 
612 

71–1490 

 
557 

102–1119 

 
584 

71–1490 

 
569 

104– 2245 

 
550 

121–1375 
Free/reduced-price lunch 
(%) 
     Mean 
     Range 

 
 

49 
4–99 

 
 

54 
1–94 

 
 

53 
11–99 

 
 

47 
12–89 

 
 

43 
0–92 

Campus ethnicity (mean %) 
  White 
  Hispanic 
  Asian 
  African American 

 
48 
44 
2 
6 

 
49 
45 
2 
4 

 
43 
48 
2 
6 

 
59 
30 
1 
9 

 
57 
35 
1 
6 

Note: Within each study, no significant differences existed between groups on campus enrollment, 
free/reduced-price lunch, or campus ethnicity. 
 
 
Student Characteristics  
 

Seventh-Grade Year 1 
Experiment 

Seventh-Grade 
Quasi-Experiment 

Eighth-Grade 
Experiment 

Variable Delayed Immediate Year 1 Year 2 Control Treatment
Total count of students 825 796 510 538 303 522 
Female (%) 50.6 48.9 52.4     41.9** 45.1 47.9 
Individual ethnicity (%) 

White 
Hispanic 
Asian 
African American 

 
38.7 
54.1 
2.0 
4.7 

 
48.5 
44.3 
1.5 
4.2 

 
39.6 
51.7 
2.8 
5.5 

 
35.4 
55.8 
2.6 
5.3 

 
65.6 
22.7 
1.1 
9.5 

 
50.0 

     40.7* 
1.3 
6.9 

Achievement level (%) 
Low 
Medium 
High 

 
26.2 
42.9 
24.2 

 
22.5 
35.9 
28.6 

 
26.9 
45.3 
25.9 

 
27.5 
41.1 
25.5 

 
23.4 
42.4 
25.4 

 
25.1 
37.7 
26.6 

** p < .01; * p < .05 
Note: Significance tests compared groups within study using a two-level MLM model. 
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Tables 

Table 1 
 Mathematical Conceptual Frameworks for the Seventh-Grade and Eighth-Grade 

Curricula and Assessments. M1 and M2 refer to the two major dimensions of each 
framework. 

Framework M1 Component 
Foundational concepts typically 
covered in the grade-level 
standards, curricula, and 
assessments 

M2 Component 
Building on the foundations of M1, 
essentials of concepts of mathematics 
of change and variation found in 
algebra, calculus, and the sciences 

Rate and 
Proportionality for 
the Seventh-Grade 
Studies 
 

• Simple a/b = c/d or y = kx 
problems in which all but one 
of the values are provided and 
the last must be calculated 

• Basic graph and table reading 
without interpretation (e.g., 
given a particular value, 
finding the corresponding 
value in a graph or table of a 
relationship) 

• Reasoning about a representation 
(e.g., graph, table, or y = kx 
formula) in which a multiplicative 
constant k represents a constant 
rate, slope, speed, or scaling factor 
across three or more pairs of 
values that are given or implied 

• Reasoning across two or more 
representations 

Linear Function for 
the Eighth-Grade 
Study 

• Categorizing functions as 
linear/nonlinear and 
proportional/nonproportional 

• Within one representation of 
one linear function (formula, 
table, graph, narrative), 
finding an input or output 
value 

• Translating one linear 
function from one 
representation to another 

• Interpreting two or more functions 
that represent change over time, 
including linear functions or 
segments of piecewise linear 
functions 

• Finding the average rate over a 
single multirate piecewise linear 
function 
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Table 2 

Summary of Key Contrasts Between the Seventh-Grade and Eighth-Grade Studies 
 
 Seventh-Grade Study Eighth-Grade 

Experiment 
Start of the experiment Summer 2005 Summer 2006 
 
Duration 

 
2 years 

 
1 year 

 
Embedded study 

 
Primary experiment and 
Quasi-experimental study 

 
Primary experiment only 

 
Mathematical content focus 

 
Rate and proportionality 

 
Linear function 

 
Teacher professional development 
(TPD) 

  

Delivery model Researcher led Train-the-trainers model 
Mathematics knowledge for 
teaching 

2-day TEXTEAMS 
workshop 

Not emphasized 

Total length of treatment TPD 5 days (2 days TEXTEAMS 
and 3 days SimCalc) 

3 days SimCalc only 

 
Counterfactual 

  

Classroom implementation Business as usual Business as usual 
TPD TEXTEAMS workshop 

covered content 
knowledge pertinent to 
the unit 

TMT3 workshop covered 
orthogonal but important 
content knowledge 
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Table 3 
Student Test Scores at the Student Level. The seventh-grade assessment had 30 

items and the eighth-grade assessment had 36 items 
 

  
 

Total Score 
  Pretest Posttest Gain 
 N Mean SD Mean SD Mean SD 

Effect Size 
of Gain 
Score 

Difference
Total score         

Seventh-Grade Year 1 Experiment         
Control 825 12.7 5.7 15.0 5.7 2.2 3.8 0.63*** 
Treatment 796 13.2 5.7 19.0 6.0 5.8 4.0  

Seventh-Grade Quasi-Experiment         
Delayed Year 1 510 12.8 5.2 15.2 5.5 2.4 3.9 0.50*** 
Delayed Year 2 538 12.6 5.4 17.7 6.2 5.1 3.9  

Eighth-Grade Experiment         
Control 303 12.5 7.6 15.4 8.4 2.9 5.2 0.56*** 
Treatment 522 11.9 7.3 18.9 8.7 7.0 5.0  

M1 subscale         
Seventh-Grade Year 1 Experiment         

Control 825 7.2 2.7 8.0 2.5 0.8 2.2 0.10 
Treatment 796 7.5 2.6 8.6 2.0 1.1 2.1  

Seventh-Grade Quasi-Experiment         
Delayed Year 1 510 7.3 2.5 8.2 2.4 0.8 2.3 0.13* 
Delayed Year 2 538 7.3 2.6 8.5 2.2 1.2 2.1  

Eighth-Grade Experiment         
Control 303 7.2 3.8 8.7 4.0 1.5 2.9 0.19 
Treatment 522 7.2 3.6 9.4 4.2 2.2 2.7  

M2 subscale         
Seventh-Grade Year 1 Experiment         

Control 825 5.5 3.6 7.0 4.0 1.4 2.7 .89*** 
Treatment 796 5.7 3.8 10.5 4.5 4.7 3.3  

Seventh-Grade Quasi-Experiment         
Delayed Year 1 510 5.4 3.4 7.0 3.8 1.6 2.8 .69*** 
Delayed Year 2 538 5.3 3.5 9.2 4.5 3.9 3.2  

Eighth-Grade Experiment         
Control 303 5.3 4.4 6.6 4.9 1.4 3.5 .81*** 
Treatment 522 4.7 4.2 9.5 4.9 4.8 3.3  

*** p < .0001; * p < .05  
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Table 4 
Two-level MLM Models Run in Each Study for Each Factor Predicting M2 Gains 

 
 

 
Seventh-Grade Year 1 

Experiment 
Seventh-Grade 

Quasi-Experiment 
Eighth-Grade 
Experiment 

 
(Main effect is 

experimental condition)
(Main effect is year 1 

vs. year 2) 
(Main effect is 

experimental condition)
 N = 1,444 N = 997 N = 657 
Model Value SE Value Value SE Value 
Unconditional       

Intercept 3.03*** 0.275 2.82*** 0.252 3.26*** 0.377 
Level 2 Variance 4.72  1.31  4.88  
Residual Variance 8.07  9.16  8.82  

2
01χ † 463.03***  76.85***  174.64***  

Main Effect Only       
Main Effect 3.55*** 0.343 2.46*** 0.179 3.26*** 0.544 
Intercept 1.34*** 0.236 1.63*** 0.280 1.44*** 0.416 
Level 2 Variance 1.55  1.53  2.11  
Residual Variance 8.07  7.65  8.84  

2
01χ  134.21***  109.66***  51.55***  

School is in Region 1       
Main Effect 3.74*** 0.377 2.83*** 0.204 3.26*** 0.544 
Region 1 0.35 0.611 0.62 0.760 0.00  
Region 1 Interaction -1.10 0.909 -1.48*** 0.415 0.00  
Intercept 1.28*** 0.262 1.47*** 0.314 1.44*** 0.416 
Level 2 Variance 1.55  1.62  2.11  
Residual Variance 8.07  7.56  8.84  

2
01χ  120.24***  110.34***  51.55***  

Free/reduced-price lunch (%)       
Main Effect 3.57*** 0.344 2.55*** 0.177 3.27*** 0.553 
SES 0.53 0.877 0.52 0.975 1.03 1.847 
SES Interaction -1.25 1.247 -3.53*** 0.636 -2.35 2.500 
Intercept 1.35*** 0.236 1.59*** 0.263 1.41*** 0.423 
Level 2 Variance 1.54  1.31  2.17  
Residual Variance 8.07  7.45  8.84  

2
01χ  120.34***  81.42***  50.09***  

Student is Hispanic       
Main Effect 3.73*** 0.383 3.49*** 0.259 3.63*** 0.570 
Hispanic -0.25 0.282 0.10 0.292 0.40 0.506 
Hispanic Interaction -0.41 0.391 -1.84*** 0.351 -1.04 0.603 
Intercept 1.47*** 0.269 1.56*** 0.293 1.33** 0.433 
Level 2 Variance 1.49  1.22  2.05  
Residual Variance 8.05  7.41  8.82  

2
01χ  123.96***  75.04***  49.43***  
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Seventh-Grade Year 1 

Experiment 
Seventh-Grade 

Quasi-Experiment 
Eighth-Grade 
Experiment 

 
(Main effect is 

experimental condition)
(Main effect is year 1 

vs. year 2) 
(Main effect is 

experimental condition)
 N = 1,444 N = 997 N = 657 
Model Value SE Value Value SE Value 
Student is Female       

Main Effect 3.49*** 0.374 2.60*** 0.246 3.35*** 0.594 
Female -0.01 0.211 0.20 0.253 -0.51 0.411 
Female Interaction 0.14 0.307 -0.27 0.359 -0.17 0.505 
Intercept 1.35*** 0.259 1.53*** 0.308 1.69*** 0.459 
Level 2 Variance 1.54  1.52  2.06  
Residual Variance 8.08  7.66  8.78  

2
01χ  133.05***  107.46***  49.89***  

Teacher-rated prior achievement       
Main Effect 3.45*** 0.387 2.56*** 0.261 3.02*** 0.609 
High Group 0.47 0.273 0.36 0.315 0.48 0.490 
Low Group -0.35 0.256 -0.30 0.303 -1.11* 0.505 
High Group Interaction 0.77 0.399 0.69 0.435 0.11 0.614 
Low Group Interaction -0.81* 0.379 -0.91* 0.424 0.41 0.626 
Intercept 1.33*** 0.264 1.61*** 0.303 1.70*** 0.470 
Level 2 Variance 1.55  1.41  2.05  
Residual Variance 7.76  7.36  8.67  

2
01χ  141.98***  97.42***  45.97***  

† 2
01χ statistic is an adjusted chi-square statistic from a likelihood ratio test of the given model against a 

model without random intercepts. See Gutierrez, Carter, and Drukker (2001) for details. 
 
Note: Full model is 00 01 02 03ij j ij j ij ij jY T X T X r uγ γ γ γ= + + + ∗ + + , where Xij may be a level 1 or 
level 2 covariate. All models within an experiment fit are estimated on identical sets of cases. 
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Figure Captions 

Figure 1. MathWorlds Software Animation of Motion 

Figure 2. Student Mean Difference Scores (± SE of total using MLM) at the Student Level 

Figure 3. Mean Student Learning Gains on M2 by Subpopulation Group. Data are presented at 

the student level. 

Figure 4. In the Seventh Grade Experiment, Days Spent Teaching Various Basic Operations, M1, 

and M2 Topics 

Figure 5. In the Eighth-Grade Experiment, Days Spent Teaching Various M1 and M2 Topics 
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Figure 1. MathWorlds software animation of motion. 
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Figure 2.  Student mean difference scores (± SE of total using MLM) at the student level. 
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Figure 3.  Raw mean student learning gains on M2 by subpopulation group. Data are presented at 

the student level. 

 
 
Note: Region 1 only participated in the Seventh Grade Studies, not the Eighth Grade Experiment, 
due to a shift in local circumstances in the year between recruitment for the two studies. 
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Figure 4. In the Seventh-Grade Studies, days spent teaching various basic operations, M1, and M2 

topics. 
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Figure 5. In the Eighth-Grade Experiment, days spent teaching various M1 and M2 topics. 
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